A Conserved Arginine-Rich Motif within the Hypervariable N-Domain of Drosophila Centromeric Histone H3 (CenH3CID) Mediates BubR1 Recruitment

نویسندگان

  • Mònica Torras-Llort
  • Sònia Medina-Giró
  • Olga Moreno-Moreno
  • Fernando Azorín
چکیده

BACKGROUND Centromere identity is determined epigenetically by deposition of CenH3, a centromere-specific histone H3 variant that dictates kinetochore assembly. The molecular basis of the contribution of CenH3 to centromere/kinetochore functions is, however, incompletely understood, as its interactions with the rest of centromere/kinetochore components remain largely uncharacterised at the molecular/structural level. PRINCIPAL FINDINGS Here, we report on the contribution of Drosophila CenH3(CID) to recruitment of BubR1, a conserved kinetochore protein that is a core component of the spindle attachment checkpoint (SAC). This interaction is mediated by the N-terminal domain of CenH3(CID) (NCenH3(CID)), as tethering NCenH3(CID) to an ectopic reporter construct results in BubR1 recruitment and BubR1-dependent silencing of the reporter gene. Here, we also show that this interaction depends on a short arginine (R)-rich motif and that, most remarkably, it appears to be evolutionarily conserved, as tethering constructs carrying the highly divergent NCenH3 of budding yeast and human also induce silencing of the reporter. Interestingly, though NCenH3 shows an exceedingly low degree of conservation, the presence of R-rich motives is a common feature of NCenH3 from distant species. Finally, our results also indicate that two other conserved sequence motives within NCenH3(CID) might also be involved in interactions with kinetochore components. CONCLUSIONS These results unveil an unexpected contribution of the hypervariable N-domain of CenH3 to recruitment of kinetochore components, identifying simple R-rich motives within it as evolutionary conserved structural determinants involved in BubR1 recruitment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cis-Acting DNA from Fission Yeast Centromeres Mediates Histone H3 Methylation and Recruitment of Silencing Factors and Cohesin to an Ectopic Site

BACKGROUND Metazoan centromeres are generally composed of large repetitive DNA structures packaged in heterochromatin. Similarly, fission yeast centromeres contain large inverted repeats and two distinct silenced domains that are both required for centromere function. The central domain is flanked by outer repetitive elements coated in histone H3 methylated on lysine 9 and bound by conserved he...

متن کامل

Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone.

All eukaryotes contain centromere-specific histone H3 variants (CenH3s), which replace H3 in centromeric chromatin. We have previously documented the adaptive evolution of the Drosophila CenH3 (Cid) in comparisons of Drosophila melanogaster and Drosophila simulans, a divergence of approximately 2.5 million years. We have proposed that rapidly changing centromeric DNA may be driving CenH3's alte...

متن کامل

The F Box Protein Partner of Paired Regulates Stability of Drosophila Centromeric Histone H3, CenH3CID

Centromere identity and function is determined by the specific localization of CenH3 (reviewed in [1-7]). Several mechanisms regulate centromeric CenH3 localization, including proteasome-mediated degradation that, both in budding yeast and Drosophila, regulates CenH3 levels and prevents promiscuous misincorporation throughout chromatin [8, 9]. CenH3(CENP-A) proteolysis has also been reported in...

متن کامل

Polycomb recruitment to DNA in vivo by the YY1 REPO domain.

Polycomb group (PcG) proteins are responsible for maintaining transcriptional repression of developmentally important genes. However, the mechanism of PcG recruitment to specific DNA sequences is poorly understood. Transcription factor YY1 is one of the few PcG proteins with sequence-specific DNA binding activity. We previously showed that YY1 can recruit other PcG proteins to DNA, leading to h...

متن کامل

Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain.

The centromeric histone H3 (CENH3) substitutes histone H3 within the nucleosomes of active centromeres in all eukaryotes. CENH3 deposition at centromeres is needed to assemble the kinetochore, a complex of conserved proteins responsible for correct chromosome segregation during nuclear division. Histones of regular nucleosomes are loaded during replication in S phase, while CENH3 deposition dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010